Application of elitist multi-objective genetic algorithm for classification rule generation

نویسندگان

  • Satchidananda Dehuri
  • Srikanta Patnaik
  • Ashish Ghosh
  • Rajib Mall
چکیده

We present an elitist multi-objective genetic algorithm (EMOGA) for mining classification rules from large databases. We emphasize on predictive accuracy, comprehensibility and interestingness of the rules. However, predictive accuracy, comprehensibility and interestingness of the rules often conflict with each other. This makes it a multi-objective optimization problem that is very difficult to solve efficiently. We have proposed a multi-objective genetic algorithm with a hybrid crossover operator for optimizing these objectives simultaneously. We have compared our rule discovery procedure with simple genetic algorithm with a weighted sum of all these objectives. The experimental result confirms that our rule discovery algorithm has a clear edge over simple genetic algorithm. # 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...

متن کامل

Multi-objective Genetic Optimization of Ethane Thermal Cracking Reactor

An industrial ethane thermal cracking reactor was modeled assuming a molecular mechanism for the reaction kinetics coupled with material, energy, and momentum balances of the reactant-product flow along the reactor. To carry out the multi-objective optimization for two objectives such as conversion and ethylene selectivity, the elitist non-dominated sorting genetic algorithm was used. The Paret...

متن کامل

Application of Genetic Algorithm to Determine Kinetic Parameters of Free Radical Polymerization of Vinyl Acetate by Multi-objective Optimization Technique

A Multi-objective optimization procedure has been developed to determine some kinetic parameters of free radical polymerization of vinyl acetate based on genetic algorithm. For this purpose, mathematical modeling of free radical polymerization of vinyl acetate is carried out first and then selected kinetic parameters are optimized by minimizing objective functions defined from comparing exp...

متن کامل

Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm

Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...

متن کامل

Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring

In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008